The optimization of success probability for software projects using genetic algorithms
نویسندگان
چکیده
The software development process is usually affected by many risk factors that may cause the loss of control and failure, thus which need to be identified and mitigated by project managers. Software development companies are currently improving their process by adopting internationally accepted practices, with the aim of avoiding risks and demonstrating the quality of their work. This paper aims to develop a method to identify which risk factors are more influential in determining project outcome. This method must also propose a cost effective investment of project resources to improve the probability of project success. To achieve these aims, we use the probability of success relative to cost to calculate the efficiency of the probable project outcome. The definition of efficiency used in this paper was proposed by researchers in the field of education. We then use this efficiency as the fitness function in an optimization technique based on genetic algorithms. This method maximizes the success probability output of a prediction model relative to cost. The optimization method was tested with several software risk prediction models that have been developed based on the literature and using data from a survey which collected information from in-house and outsourced software development projects in the Chilean software industry. These models predict the probability of success of a project based on the activities undertaken by the project manager and development team. The results show that the proposed method is very useful to identify those activities needing greater allocation of resources, and which of these will have a higher impact on the projects success probability. Therefore using the measure of efficiency has allowed a modular approach to identifying those activities in software development on which to focus the project’s limited resources to improve its probability of success. The genetic algorithm and the measure of efficiency presented in this paper permits model independence, in both prediction of success and cost evaluation.
منابع مشابه
Software Cost Estimation by a New Hybrid Model of Particle Swarm Optimization and K-Nearest Neighbor Algorithms
A successful software should be finalized with determined and predetermined cost and time. Software is a production which its approximate cost is expert workforce and professionals. The most important and approximate software cost estimation (SCE) is related to the trained workforce. Creative nature of software projects and its abstract nature make extremely cost and time of projects difficult ...
متن کاملOptimal Design and Benefit/Cost Analysis of Reservoir Dams by Genetic Algorithms Case Study: Sonateh Dam, Kordistan Province, Iran
This paper presents a method concerning the integration of the benefit/cost analysis and the real genetic algorithm with various elements of reservoir dam design. The version 4.0 of HEC-RAS software and Hydro-Rout models have been used to simulate the region and flood routing in the reservoir of the dam, respectively. A mathematical programming has been prepared in MATLAB software and linked wi...
متن کاملبهینه سازی سازه های فضاکار بادرنظرگرفتن احتمال خرابی اعضاء و گره ها به کمک الگوریتم وراثتی اصلاح شده
Due to the probabilistic nature and uncertainties of structural parameters, reliability-based optimization will enable engineers to account for the safety of the structures and allow for its decision making applicability. Thus, reliability-based design will substitute deterministic rules of codes of practice. Space structures are of those types that have an exceedingly high range of applicabili...
متن کاملImprovement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Systems and Software
دوره 84 شماره
صفحات -
تاریخ انتشار 2011